Methodology for Satellite Formation-Keeping in the Presence of System Uncertainties

نویسندگان

  • Firdaus E. Udwadia
  • Thanapat Wanichanon
  • Hancheol Cho
چکیده

A two-step formation-keeping control methodology is proposed that includes both attitude and orbital control requirements in the presence of uncertainties. Based on a nominal systemmodel that provides the best assessment of the real-life uncertain environment, a nonlinear controller that satisfies the required attitude and orbital requirements is first developed. This controller allows the nonlinear nominal system to exactly track the desired attitude and orbital requirements without making any linearizations/approximations. In the second step, a new additional set of closed-form additive continuous controllers is developed. These continuous controllers compensate for uncertainties in the physical model of the satellite and in the forces to which it may be subjected. They obviate the problem of chattering. The desired trajectory of the nominal system is used as the tracking signal, and these controllers are based on a generalization of the concept of sliding surfaces. Error bounds on tracking due to the presence of uncertainties are analytically obtained. The resulting closed-form methodology permits the desired attitude and orbital requirements of the nominal system to be met within user-specified bounds in the presence of unknown, but bounded, uncertainties. Numerical results are provided, showing the simplicity and efficacy of the control methodology, and the reliability of the analytically obtained error bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems

This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...

متن کامل

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

Finite-gain L∞ stabilization of satellite formation flying with input saturation

In this paper, we consider a formation keeping problem for a satellite formation flying system. The relative motion dynamics is designed with polytopic uncertainties by considering elliptical reference orbit, noncoplarnar formation and unknown angular rate, angular acceleration within some boundary. We propose a composite nonlinear feedback control law obtained by the solution to an algebraic R...

متن کامل

Attitude Synchronization Control in Satellite Formation Flying in the Presence of States Measurement Errors

This paper presents a novel attitude synchronization framework for tracking control of multiple identical/heterogeneous satellites in formation flying with connected communication graph. The main contribution of the paper is considering sensors' measurement error to derive control gains. Moreover, the proposed strategy need no angular velocity communication. Nevertheless, the tracking synchroni...

متن کامل

Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors

This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014